Abstract
ABSTRACTThis article deals with the problem of estimating the derivatives of a regression function based on biased data. We develop two different linear wavelet estimators according to the knowledge of the “biased density” of the design. The new estimators are analyzed with respect to their -risk with p ⩾ 1 over Besov balls. Fast polynomial rates of convergence are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.