Abstract

In order to get the factor of influence of bubbly liquid on the acoustic wave propagation, the linear wave propagation in bubbly liquid is studied. The influence of bubbles is taken into account when the acoustic model of bubbly liquid is established, and we can get the corrected oscillation equation of the bubble when the interaction of bubbles is taken into the Keller's model. One can get the acoustic attenuation coefficient and the sound speed of the bubbly liquid through solving the linearized equation of wave propagation of bubbly liquids and the oscillation equation of bubbles when (ωR0)/c << 1. After the numerical analysis, we find that the acoustic attenuation coefficient increases and the sound speed will turn smaller as the numbers of bubbles increases and the bubbles gets smaller when the driving frequency of sound field keeps constant; when the driving frequency is far bellow the resonance frequency of bubble and both the volume fraction and the size of bubbles are kept constant, the sound speed will changes in a way contrary to the case of driving frequency of sound field; it is not evident that the bubble interaction influences the acoustic attenuation coefficient and the sound speed. Finally, we deem that the volume concentration, the size of bubble and the driving frequency of sound field are the important parameters which determine the deviations of the sound speed and the attenuation from those of bubble-free water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.