Abstract

Capillary wave flow in a two-layer fluid with the upper layer moving parallel to the charged interface at a constant velocity is treated within a linear mathematical model. Interaction between waves excited on the free surface of the upper layer and at the interface results not only in classical Kelvin-Helmholtz instability (at low velocities of the upper layer) but also in oscillatory instability of the interface. The instability increment depends on the fluid density ratio, translational velocity, and charge density at the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.