Abstract

Advanced ceramics printed with photon-based additive manufacturing deals with anisotropic mechanical properties from the layer-by-layer manufacturing. Motivated by the success in using highly filled transparent slurries containing nanoparticles for powder-based two-photon-polymerization (2PP) for advanced ceramic printing, this works approach is the transfer to Xolography, a volumetric additive manufacturing technology based on linear two-photon excitation and without recoating steps. This paper reports the results of a preliminary investigation optimizing the photocurable slurry to the requirements of Xolography in terms of transparency, over a significantly larger mean free path, compared to 2PP. A feedstock filled with 70 % weight fraction of ceramic particles (∼30 vol%) exhibiting an exceptionally high degree of transparency in the relevant wavelength range of 400–800 nm was prepared from 5 nm zirconia nanoparticles. The high transparency of the photocurable slurry is attributed to the near-monomodal particle size distribution of the zirconia nanoparticles used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.