Abstract

In this work, the rheological behavior of block copolymers with different morphologies (lamellar, cylindrical, spherical, and disordered) and their clay-containing nanocomposites was studied using small amplitude oscillatory shear. The copolymers studied were one asymmetric starblock styrene–butadiene–styrene copolymer and four styrene–ethylene/butylenes–styrene copolymers with different molecular architectures, one of them being modified with maleic anhydride. The nanocomposites of those copolymers were prepared by adding organophilic clay using three different preparation techniques: melt mixing, solution casting, and a hybrid melt mixing–solution technique. The nanocomposites were characterized by X-ray diffraction and transmission electron microscopy, and their viscoelastic properties were evaluated and compared to the ones of the pure copolymers. The influence of copolymer morphology and presence of clay on the storage modulus (G′) curves was studied by the evaluation of the changes in the low frequency slope of log G′× logω (ω: frequency) curves upon variation of temperature and clay addition. This slope may be related to the degree of liquid- or solid-like behavior of a material. It was observed that at temperatures corresponding to the ordered state, the rheological behavior of the nanocomposites depended mainly on the viscoelasticity of each type of ordered phase and the variation of the slope due to the addition of clay was small. For temperatures corresponding to the disordered state, however, the rheological behavior of the copolymer nanocomposites was dictated mostly by the degree of clay dispersion: When the clay was well dispersed, a strong solid-like behavior corresponding to large G′ slope variations was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.