Abstract

We prepare well dispersed nanocomposites based on Graphite Nanoplatelets (GNPs) and polystyrene (PS) through a combination of solution and melt mixing techniques. The samples are subjected to morphological, electrical, and rheological investigations. Electron microscopy analyses show that GNPs are well dispersed, and the presence of few nanometers thick GNPs is noticed. The electrical conductivity of the polymer dramatically increases at a critical content of particles of Φ∼4 wt.%, indicating that electrical percolation has occurred. The existence of a percolating network induces a marked elastic connotation in the melt state. We show that the elasticity of GNP networks in samples at different composition can be scaled on a single master curve. This allows for the accurate estimation of the rheological percolation threshold. In addition, using the master curve we can infer the elasticity of GNP networks which are too tenuous to be appreciated via conventional rheological measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.