Abstract
The viscoelastic behavior of a depletion-flocculated dispersion of colloidal spheres is investigated at different volume fractions of the spheres, using a controlled stress and a dynamic rheometer. Combining the results, we obtain the storage G′ and loss G′′ moduli over a frequency range of 0.02<ω<200rad/s. The measured G′ gradually increases with increasing frequency, while G′′ almost remains constant, indicating a broad spectrum of relaxation times. To describe and explain the observed behavior of the moduli as a function of frequency and volume fraction in terms of microscopic parameters, a microrheological model based on the fractal concept is proposed. Comparing experimental results with model calculations, we find a good agreement between the two, with physically plausible parameter values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.