Abstract

In this paper, a linear time-varying model predictive control (MPC) is proposed for the wheeled mobile robot to track the reference trajectory. The nonlinear model subject to the non-holonomic constraint is linearized and discretized into a linear time-varying model, such that the time-varying MPC can be applied. The MPC algorithm is processed with the linear time-varying model. Recursive feasibility and closed-loop stability are proved in the framework of time-varying systems, while the control inputs (linear and angular velocities) are proved to be bounded within their constraints. A simulation example is provided to support the theoretical result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.