Abstract

For optimization of classes of linear time-varying dynamic systems with n states and m control inputs, a new higher-order procedure was presented by the authors that does not use Lagrange multipliers. In this new procedure, the optimal solution was shown to satisfy m 2p-order differential equations with time-varying coefficients. These differential equations were solved using weighted residual methods. Even though solution of the optimization problem using this procedure was demonstrated to be computation efficient, shifted Chebyshev’s polynomials are used in the paper to solve the higher-order differential equations. This further reduces the computations and makes this algorithm more appropriate for real-time implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.