Abstract

In this paper, an optimal linear-time algorithm is presented to solve the haplotype inference problem for pedigree data when there are no recombinations and the pedigree has no mating loops. The approach is based on the use of graphs to capture SNP, Mendelian, and parity constraints of the given pedigree. This representation allows us to capture the constraints as the edges in a graph, rather than as a system of linear equations as in previous approaches. Graph traversals are then used to resolve the parity of these edges, resulting in an optimal running time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.