Abstract

Benkart, Sottile, and Stroomer have completely characterized by Knuth and dual Knuth equivalence a bijective proof of the Littlewood―Richardson coefficient conjugation symmetry, i.e. $c_{\mu, \nu}^{\lambda} =c_{\mu^t,\nu^t}^{\lambda ^t}$. Tableau―switching provides an algorithm to produce such a bijective proof. Fulton has shown that the White and the Hanlon―Sundaram maps are versions of that bijection. In this paper one exhibits explicitly the Yamanouchi word produced by that conjugation symmetry map which on its turn leads to a new and very natural version of the same map already considered independently. A consequence of this latter construction is that using notions of Relative Computational Complexity we are allowed to show that this conjugation symmetry map is linear time reducible to the Schützenberger involution and reciprocally. Thus the Benkart―Sottile―Stroomer conjugation symmetry map with the two mentioned versions, the three versions of the commutative symmetry map, and Schützenberger involution, are linear time reducible to each other. This answers a question posed by Pak and Vallejo. Benkart, Sottile, et Stroomer ont complètement caractérisé par équivalence et équivalence duelle à Knuth une preuve bijective de la symétrie de la conjugaison des coefficients de Littlewood―Richardson, i.e. $c_{\mu, \nu}^{\lambda} =c_{\mu^t,\nu^t}^{\lambda ^t}$. Le tableau-switching donne un algorithme par produire une telle preuve bijective. Fulton a montré que les bijections de White et de Hanlon et Sundaram sont des versions de cette bijection. Dans ce papier on exhibe explicitement le mot de Yamanouchi produit par cette bijection de conjugaison lequel à son tour conduit à une nouvelle version très naturelle de la même bijection déjà considérée indépendamment. Une conséquence de cette dernière construction c'est qu'en utilisant des notions de Complexité Computationnelle Relative nous pouvons montrer que cette bijection de symétrie de la conjugaison est linéairement réductible à l'involution de Schützenberger et réciproquement. Ainsi la bijection de symétrie de la conjugaison de Benkart, Sottile et Stroomer avec les deux versions mentionnées, tout comme les trois versions de la bijection de la commutativité, et l'involution de Schützenberger sont linéairement réductibles les unes aux autres. Ça répond à une question posée par Pak et Vallejo.

Highlights

  • As there are several Littlewood-Richardson rules to compute these numbers, the combinatorics of their symmetries is quite intriguing since in all of them the commutativity is hidden, and the conjugation is either hidden or partially hidden (BZ; Knutson-Tao hives (KT); PV1). This is in contrast with the fact that most of the symmetries are explicitly exhibited by simple means (PV1)

  • If one writes cλμ ν =: cμ ν λ∨, with λ∨ the complement partition of λ regarding some rectangle containing λ, the Littlewood-Richardson coefficients are invariant under the following action of Z2 × S3: the non–identity element of Z2 transposes simultaneously μ, ν and λ∨, and S3 sorts μ, ν and λ∨ (BSS)

  • The image of T by the Benkart-Sottile-Stroomer conjugation symmetry map (BSS)-bijection is the unique tableau of shape λt/μt in both those two equivalence classes

Read more

Summary

Introduction

As there are several Littlewood-Richardson rules to compute these numbers, the combinatorics of their symmetries is quite intriguing since in all of them the commutativity is hidden, and the conjugation is either hidden or partially hidden (BZ; KT; PV1). This is in contrast with the fact that most of the symmetries are explicitly exhibited by simple means (PV1). Pak and Vallejo have defined in (PV1) bijections, which are explicit linear maps, between LR tableaux, Knutson-Tao hives (KT) and BZ triangles. In (PV2), a number of Young tableau commutative symmetry maps are considered and it is shown that two of them are linear time reducible to each other and to the Schutzenberger involution. This answers a question posed by Pak and Vallejo in (PV2)

Summary of the results
Young diagrams and transformations
Tableaux and words
Matrices and tableaux
Rotation and transposition of LR tableaux
Knuth equivalence and dual Knuth equivalence
The transposition of the rotated reversal LR tableau
Main bijections
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call