Abstract

Benkart, Sottile, and Stroomer have completely characterized by Knuth and dual Knuth equivalence a bijective proof of the Littlewood―Richardson coefficient conjugation symmetry, i.e. $c_{\mu, \nu}^{\lambda} =c_{\mu^t,\nu^t}^{\lambda ^t}$. Tableau―switching provides an algorithm to produce such a bijective proof. Fulton has shown that the White and the Hanlon―Sundaram maps are versions of that bijection. In this paper one exhibits explicitly the Yamanouchi word produced by that conjugation symmetry map which on its turn leads to a new and very natural version of the same map already considered independently. A consequence of this latter construction is that using notions of Relative Computational Complexity we are allowed to show that this conjugation symmetry map is linear time reducible to the Schützenberger involution and reciprocally. Thus the Benkart―Sottile―Stroomer conjugation symmetry map with the two mentioned versions, the three versions of the commutative symmetry map, and Schützenberger involution, are linear time reducible to each other. This answers a question posed by Pak and Vallejo. Benkart, Sottile, et Stroomer ont complètement caractérisé par équivalence et équivalence duelle à Knuth une preuve bijective de la symétrie de la conjugaison des coefficients de Littlewood―Richardson, i.e. $c_{\mu, \nu}^{\lambda} =c_{\mu^t,\nu^t}^{\lambda ^t}$. Le tableau-switching donne un algorithme par produire une telle preuve bijective. Fulton a montré que les bijections de White et de Hanlon et Sundaram sont des versions de cette bijection. Dans ce papier on exhibe explicitement le mot de Yamanouchi produit par cette bijection de conjugaison lequel à son tour conduit à une nouvelle version très naturelle de la même bijection déjà considérée indépendamment. Une conséquence de cette dernière construction c'est qu'en utilisant des notions de Complexité Computationnelle Relative nous pouvons montrer que cette bijection de symétrie de la conjugaison est linéairement réductible à l'involution de Schützenberger et réciproquement. Ainsi la bijection de symétrie de la conjugaison de Benkart, Sottile et Stroomer avec les deux versions mentionnées, tout comme les trois versions de la bijection de la commutativité, et l'involution de Schützenberger sont linéairement réductibles les unes aux autres. Ça répond à une question posée par Pak et Vallejo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.