Abstract

Causal effect estimation from observational data is a fundamental task in empirical sciences. It becomes particularly challenging when unobserved confounders are involved in a system. This paper focuses on front-door adjustment – a classic technique which, using observed mediators allows to identify causal effects even in the presence of unobserved confounding. While the statistical properties of the front-door estimation are quite well understood, its algorithmic aspects remained unexplored for a long time. In 2022, Jeong, Tian, and Bareinboim presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given directed acyclic graph (DAG), with an O(n³(n+m)) run time, where n denotes the number of variables and m the number of edges of the causal graph. In our work, we give the first linear-time, i.e., O(n+m), algorithm for this task, which thus reaches the asymptotically optimal time complexity. This result implies an O(n(n+m)) delay enumeration algorithm of all front-door adjustment sets, again improving previous work by a factor of n³. Moreover, we provide the first linear-time algorithm for finding a minimal front-door adjustment set. We offer implementations of our algorithms in multiple programming languages to facilitate practical usage and empirically validate their feasibility, even for large graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call