Abstract
The complexity status of the minimum r-star cover problem for orthogonal polygons had been open for many years, until 2004 when Ch. Worman and J. M. Keil proved it to be polynomially tractable (Polygon decomposition and the orthogonal art gallery problem, IJCGA 17(2) (2007), 105-138). However, since their algorithm has Õ(n17)-time complexity, where Õ(·) hides a polylogarithmic factor, and thus it is not practical, in this paper we present a linear-time 3-approximation algorithm. Our approach is based upon the novel partition of an orthogonal polygon into so-called o-star-shaped orthogonal polygons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Geometry & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.