Abstract

The brain constitutes a good example of a chaotic, nonlinear biological system where large neuronal networks operate chaotically with random connectivity. This critical state is significantly affected by the anesthetic loss of consciousness induced by drugs whose pharmacological behavior has been classically based on linear kinetics and dynamics. Recent developments in pharmacology and brain monitoring during anesthesia suggest a different view that we tried to explore in this article. The concepts of effect-site for hypnotic drugs modeling a maximum effect, electroencephalographic dynamics during induction, maintenance, and recovery from anesthesia are discussed, integrated into this alternative view, and how it may be applied in daily clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call