Abstract

We present a formulation for a linear temporal logic (LTL)-based task planning using the Koopman operator. The dynamics of nonlinear systems can be represented as linear systems by lifting them to a space of augmented states using the Koopman operator. On the other hand, the lifted linear system cannot capture the nonlinear effects of inputs, which appear in many robotic systems. Therefore, instead of a lifted linear system, we can consider representing control-affine bilinear systems. However, since the lifted bilinear systems are nonlinear, we need to solve nonlinear programming problems for trajectory optimization. This paper presents a methodology for the trajectory optimization problem of the lifted bilinear system. Using the mixed-integer convex approximation, we can solve the trajectory optimization problem of the lifted bilinear systems as a mixed-integer linear programming problem. This formulation allows us to solve LTL-based task planning problems for nonlinear systems. The effectiveness of the proposed method was confirmed by numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.