Abstract

The correlation of the activity of neurons in the interposed and dentate nuclei of the cerebellum with conditioned movements of the nictitating membrane was investigated using linear systems analysis. The activity of single deep cerebellar nuclear cells was assumed to be the input to a linear system that produced nictitating membrane movement. Data were initially analyzed with a causal model to assess the degree to which past neural activity predicted the conditioned response. 55 of 165 cells had correlation coefficients of 0.50 or greater between the model's moment-to-moment output and the actual output, with two interpositus cells having correlation coefficients of greater than 0.90. Double-sided impulse responses indicated that afference from the face and efference copy probably affect deep cerebellar neural activity. Nonlinearities were also found in the relationship between neuronal activity and conditioned movement. It was concluded that cerebellar deep nuclear firing is highly correlated with future nictitating membrane movements but that the firing-movement relationship contains noncausal and nonlinear components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.