Abstract
A linear superposition is studied for Wronskian rational solutions to the KdV equation, which include rogue wave solutions. It is proved that it is equivalent to a polynomial identity that an arbitrary linear combination of two Wronskian polynomial solutions with a difference two between the Wronskian orders is again a solution to the bilinear KdV equation. It is also conjectured that there is no other rational solutions among general linear superpositions of Wronskian rational solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.