Abstract

The linear stability of the double-diffusive convection in a horizontal porous layer is studied considering the upper boundary to be open. A horizontal temperature gradient is applied along the upper boundary. It is assumed that the viscous dissipation and Soret effect are significant in the medium. The governing parameters are horizontal Rayleigh number ( $$Ra_\mathrm{H}$$ ), solutal Rayleigh number ( $$Ra_\mathrm{S}$$ ), Lewis number (Le), Gebhart number (Ge) and Soret parameter (Sr). The Rayleigh number (Ra) corresponding to the applied heat flux at the bottom boundary is considered as the eigenvalue. The influence of the solutal gradient caused due to the thermal diffusion on the double-diffusive instability is investigated by varying the Soret parameter. A horizontal basic flow is induced by the applied horizontal temperature gradient. The stability of this basic flow is analyzed by calculating the critical Rayleigh number ( $$Ra_\mathrm{cr}$$ ) using the Runge–Kutta scheme accompanied by the Shooting method. The longitudinal rolls are more unstable except for some special cases. The Soret parameter has a significant effect on the stability of the flow when the upper boundary is at constant pressure. The critical Rayleigh number is decreasing in the presence of viscous dissipation except for some positive values of the Soret parameter. How a change in Soret parameter is attributing to the convective rolls is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call