Abstract
In this paper, the linear stability of static Mandal–Sengupta–Wadia (MSW) black holes in (2 + 1)-dimensional gravity against circularly symmetric perturbations is studied. Our analysis only applies to non-extremal configurations, thus leaving out the case of the extremal (2 + 1) MSW solution. The associated fields are assumed to have small perturbations in these static backgrounds. We then consider the dilaton equation and specific components of the linearized Einstein equations. The resulting effective Klein–Gordon equation is reduced to the Schrödinger-like wave equation with the associated effective potential. Finally, it is shown that MSW black holes are stable against the small time-dependent perturbations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.