Abstract

A theoretical investigation into the linear, spatial stability of plane laminar jets is presented. The three cases studied are: 1. Inviscid stability of Sato’s velocity profile. 2. Viscous stability of the Bickley’s jet using parallel-flow stability theory. 3. Viscous stability of the Bickley’s jet using a theory modified to account for the inflow terms. The integration of stability equations is started from the outer region of the jet toward the jet axis using the solution of the asymptotic forms of the governing equations. An eigenvalue search technique is employed to find the number of eigenvalues and their approximate location in a closed region of the complex eigenvalue plane. The accurate eigenvalues are obtained using secant method. The inviscid spatial stability theory is found to give results that are in better agreement with Sato’s experimental results than those obtained by him after transformation of the temporal theory results. For the viscous case the critical Reynolds number found by using the theory accounting for inflow is in better agreement with the experimental value than that given by the parallel-flow theory, implying thereby that the parallel-flow approximation for a jet is erroneous for the stability analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.