Abstract

For flight at high Mach numbers, thermal and chemical nonequilibrium may exist in the mean flow and thus affect the stability of the flow. A computational tool was developed to analyze a hypersonic mean flow and its stability including thermochemical nonequilibrium. The mean flow analysis employs the Navier-Stokes equations with a translational/vibrational temperature model for thermal nonequilibrium and a five-species reacting air model for chemical nonequilibrium. The stability analysis employs linear stability theory to describe the spatial amplification of two- and three-dimensional disturbances. The computational tool is used to determine the frequency and spatial amplification of disturbances that may lead to boundary layer transition on cold wall and adiabatic flat plates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.