Abstract

It is well known that the linear stability of Lagrangian elliptic equilateral triangle homographic solutions in the classical planar three-body problem depends on the mass parameter \({\beta=27(m_1m_2+m_2m_3+m_3m_1)/(m_1+m_2+m_3)^2 \in [0, 9]}\) and the eccentricity \({e \in [0, 1)}\) . We are not aware of any existing analytical method which relates the linear stability of these solutions to the two parameters directly in the full rectangle [0, 9] × [0, 1), aside from perturbation methods for e > 0 small enough, blow-up techniques for e sufficiently close to 1, and numerical studies. In this paper, we introduce a new rigorous analytical method to study the linear stability of these solutions in terms of the two parameters in the full (β, e) range [0, 9] × [0, 1) via the ω-index theory of symplectic paths for ω belonging to the unit circle of the complex plane, and the theory of linear operators. After establishing the ω-index decreasing property of the solutions in β for fixed \({e\in [0, 1)}\) , we prove the existence of three curves located from left to right in the rectangle [0, 9] × [0, 1), among which two are −1 degeneracy curves and the third one is the right envelope curve of the ω-degeneracy curves, and show that the linear stability pattern of such elliptic Lagrangian solutions changes if and only if the parameter (β, e) passes through each of these three curves. Interesting symmetries of these curves are also observed. The linear stability of the singular case when the eccentricity e approaches 1 is also analyzed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.