Abstract

A common feature of pattern formation in both space and time is the destabilization of a stable equilibrium solution of an ordinary differential equation by adding diffusion or delay, or both. Here we study linear stability of general reaction–diffusion systems with off-diagonal time delays. We show that a delay-stable system cannot be destabilized by diffusion, and that a diffusion stable system is also stable with respect to delay, if the diffusion is sufficiently fast. A system with direct negative feedback which is strongly stable with respect to diffusion can be destabilized by off-diagonal delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.