Abstract

The electrohydrodynamic (EHD) instability of an insulating liquid subjected to unipolar injection of ions has been the object of many different studies. It is due to the existence of a potentially unstable distribution of charge in the liquid bulk. Besides that classical instability, it has also been found experimentally that insulating liquids exhibit another kind of EHD instability when subjected to corona discharge from air. This instability, referred to as rose-window instability, is characterized by a pattern of large cells. Both instabilities arise above quite different voltage thresholds. In this paper we write down and numerically solve the linearized equations of motion of the liquid when the air above is considered. Our first aim is to discuss the effect of the air layer on the linear stability threshold for the classical EHD volume instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.