Abstract

In order to identify transitional flow, the linear stability of inward flow in a narrow gap between co-rotating disks is studied. Two methods are developed. The local approach assumes periodic nature of the flow in radial and circumferential direction, whereas the computationally more expensive biglobal variant only requires periodicity in circumferential direction. Stability maps are provided for a single set of operating conditions spanning a range of Reynolds numbers at fixed rotor geometry and rotational speed. The theoretical findings are compared to a set of experimental velocity profiles that includes the transitional region according to profile shapes. Apart from some explainable inconsistencies, the determined stability limits agree with each other and with results from previous studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.