Abstract
A linear stability analysis of hydrodynamic journal bearings is presented, including the effects of elastic distortion of the liner and micropolar lubrication. Hydrodynamic equations of the lubricant and equations of motion of the journal are solved simultaneously with the deformation equations for the bearing surface to predict the fluid film pressure distributions theoretically. The components of stiffness and damping coefficients, critical mass parameter, and whirl ratio, which reflect the dynamic characteristic of the journal bearing, are calculated for varying eccentricity ratio taking into account the flexibility of the liner and the micropolar properties of the lubricant. The results presented show that stability decreases with an increase in the value of the elasticity parameter of the bearing liner and micropolar fluids exhibit better stability in comparison to Newtonian fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.