Abstract

This work focuses on the development of a novel linear stability criterion for the state of homogeneous fluidization regime, based on a new mathematical model for gas-fluidized beds. The model is developed starting from the well-known particle bed model. A mono-dimensional momentum balance is derived leading to a set of equations which explicitly include voidage-gradient dependent terms (elastic force) for both solid and fluid phases. A fully predictive criterion for the stability of homogeneous fluidization state is here proposed, based on the well-known Wallis’ linear stability analysis. The criterion requires the choice of an appropriate averaging distance, which in the present development is found to be bed-voidage dependent. The linear stability criterion resulted in turn in a simple, yet fully predictive, relationship for incipient bubbling voidage. Validation was carried out analyzing the influence of all physical properties and sensitivity to closure relations, showing substantial agreement with literature data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.