Abstract
Dynamic coefficients of a finite length journal bearing are numerically calculated under laminar and turbulent regimes based on Ng–Pan–Elrod and Constantinescu models. Linear stability charts of a flexible rotor supported on laminar and turbulent journal bearings are found by calculating the threshold speed of instability associated to the start of instable oil whirl phenomenon. Local journal trajectories of the rotor-bearing system were found at different operating conditions solely based on the calculated dynamic coefficients in laminar and turbulent flow. Results show no difference between laminar and turbulent models at low loading while significant change of the size of the stable region was observed by increasing the Reynolds number in turbulent models. Stable margins based on the laminar flow at relatively low Sommerfeld numbers [Formula: see text] were shown to fall inside the unstable region and hence rendering the laminar stability curves obsolete at high Reynolds numbers. Ng-Pan turbulent model was found to be generally more conservative and hence is recommended for rotor-bearing design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.