Abstract

We consider optical response in multiband, multilayer two-dimensional superconductors. Within a simple model, we show that linear response to AC gating can detect collective modes of the condensate, such as Leggett and clapping modes. We show how trigonal warping of the superconducting order parameter can help facilitate detection of clapping modes. Taking rhombohedral trilayer graphene as an example, we consider several possible pairing mechanisms and show that all-electronic mechanisms may produce in-gap clapping modes. These modes, if present, should be detectable in the absorption of microwaves applied via the gate electrodes, which are necessary to enable superconductivity in this and many other settings; their detection would constitute strong evidence for unconventional pairing. Last, we show that absorption at frequencies above the superconducting gap 2|Δ| also contains a wealth of information about the gap structure. Our results suggest that linear spectroscopy can be a powerful tool for the characterization of unconventional two-dimensional superconductors. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.