Abstract
Abstract Spectral mixture modelling has developed in recent years as a suitable remote sensing tool for analysing the biophysical and compositional character of ground surfaces. In this paper the potentiality of the linear spectral mixture model to extract vegetation related parameters from 0·4-2·5 μm reflectance data has been tested. High spectral resolution reflectance measurements of soil-plant mixtures with different soil colour and plant densities were carried out in a laboratory experiment. The constrained least-squares and the factor analysis unmixing procedures were applied to generate endmember fractions of the components present in the mixtures and to test the validity of the model. It is concluded that the derived fraction of the vegetation endmember is less sensitive to soil background than the NDV[. The accuracy attainable by this modelling approach can be considered sufficient for many practical purposes, being operational in the monitoring of vegetation from satellite data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.