Abstract
BackgroundThe Damerau-Levenshtein (DL) distance metric has been widely used in the biological science. It tries to identify the similar region of DNA,RNA and protein sequences by transforming one sequence to the another using the substitution, insertion, deletion and transposition operations. Lowrance and Wagner have developed an O(mn) time O(mn) space algorithm to find the minimum cost edit sequence between strings of length m and n, respectively. In our previous research, we have developed algorithms that run in O(mn) time using only O(s∗min{m,n}+m+n) space, where s is the size of the alphabet comprising the strings, to compute the DL distance as well as the corresponding edit sequence. These are so far the fastest and most space efficient algorithms. In this paper, we focus on the development of algorithms whose asymptotic space complexity is linear.ResultsWe develop linear space algorithms to compute the Damerau-Levenshtein (DL) distance between two strings and determine the optimal trace (corresponding edit operations.)Extensive experiments conducted on three computational platforms–Xeon E5 2603, I7-x980 and Xeon E5 2695–show that, our algorithms, in addition to using less space, are much faster than earlier algorithms.ConclusionBesides using less space than the previously known algorithms,significant run-time improvement was seen for our new algorithms on all three of our experimental platforms. On all platforms, our linear-space cache-efficient algorithms reduced run time by as much as 56.4% and 57.4% in respect to compute the DL distance and an optimal edit sequences compared to previous algorithms. Our multi-core algorithms reduced the run time by up to 59.3% compared to the best previously known multi-core algorithms.
Highlights
The Damerau-Levenshtein (DL) distance metric has been widely used in the biological science
In [18] we developed algorithms that run in O(mn) time using only O(s ∗ min{m, n} + m + n) space, where s is the size of the alphabet comprising the strings, to compute the DL distance as well as the corresponding edit sequence
The linear space algorithms we develop in this paper use a refined dynamic programming recurrence for H
Summary
The Damerau-Levenshtein (DL) distance metric has been widely used in the biological science It tries to identify the similar region of DNA,RNA and protein sequences by transforming one sequence to the another using the substitution, insertion, deletion and transposition operations. We have developed algorithms that run in O(mn) time using only O(s ∗ min{m, n} + m + n) space, where s is the size of the alphabet comprising the strings, to compute the DL distance as well as the corresponding edit sequence. In the applications cited above, the DL distance is used as all 4 edit operations are permitted
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.