Abstract

Various model-based diagnosis scenarios require the computation of the most preferred fault explanations. Existing algorithms that are sound (i.e., output only actual fault explanations) and complete (i.e., can return all explanations), however, require exponential space to achieve this task. As a remedy, to enable successful diagnosis on memory-restricted devices and for memory-intensive problem cases, we propose RBF-HS, a diagnostic search based on Korf’s seminal RBFS algorithm. RBF-HS can enumerate an arbitrary fixed number of fault explanations in best-first order within linear space bounds, without sacrificing the desirable soundness or completeness properties. Evaluations using real-world diagnosis cases show that RBF-HS, when used to compute minimum-cardinality fault explanations, in most cases saves substantial space (up to 98 %) while requiring only reasonably more or even less time than Reiter’s HS-Tree, one of the most widely used diagnostic algorithms with the same properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.