Abstract
A technique is presented for performing T2 spectroscopy in magnetic resonance imaging (MRI). It is based on a weighted linear combination of T2 decay data. The data is combined in a manner that acts like a filter on the T2 spectrum. The choice of weighting coefficients determines the filter specifications (e.g. passband/stopband locations, stopband suppression factors). To perform spectroscopy, a series of filters are designed with narrow passbands centered about consecutive regions of the T2 spectrum. This provides an estimate of every region of the spectrum. Taken together, an initial estimate of the full T2 spectrum is thus obtained. However, the filtering process causes a distortion of the estimate relative to the true spectrum. To reduce this distortion, deconvolution is performed. The characteristics of the technique are first evaluated through simulation. The technique is then applied to experimental MRI data to demonstrate practical feasibility. T2 spectroscopy falls into a class of problems requiring inverse transformation with a set of exponential basis functions (i.e. the Laplace Transform). It is demonstrated how the present technique may be applied to problems involving non-exponential basis functions as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.