Abstract

Let \({{\mathrm{{PG}}}}(1,E)\) be the projective line over the endomorphism ring \( E={{\mathrm{End}}}_q({\mathbb F}_{q^t})\) of the \({\mathbb F}_q\)-vector space \({\mathbb F}_{q^t}\). As is well known, there is a bijection \(\varPsi :{{\mathrm{{PG}}}}(1,E)\rightarrow {\mathcal G}_{2t,t,q}\) with the Grassmannian of the \((t-1)\)-subspaces in \({{\mathrm{{PG}}}}(2t-1,q)\). In this paper along with any \({\mathbb F}_q\)-linear set L of rank t in \({{\mathrm{{PG}}}}(1,q^t)\), determined by a \((t-1)\)-dimensional subspace \(T^\varPsi \) of \({{\mathrm{{PG}}}}(2t-1,q)\), a subset \(L_T\) of \({{\mathrm{{PG}}}}(1,E)\) is investigated. Some properties of linear sets are expressed in terms of the projective line over the ring E. In particular, the attention is focused on the relationship between \(L_T\) and the set \(L'_T\), corresponding via \(\varPsi \) to a collection of pairwise skew \((t-1)\)-dimensional subspaces, with \(T\in L'_T\), each of which determine L. This leads among other things to a characterization of the linear sets of pseudoregulus type. It is proved that a scattered linear set L related to \(T\in {{\mathrm{{PG}}}}(1,E)\) is of pseudoregulus type if and only if there exists a projectivity \(\varphi \) of \({{\mathrm{{PG}}}}(1,E)\) such that \(L_T^\varphi =L'_T\).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call