Abstract
We have recently constructed compact, CNOT-efficient, quantum circuits for Fermionic and qubit excitations of arbitrary many-body rank [Magoulas, I.; Evangelista, F. A. J. Chem. Theory Comput. 2023, 19, 822]. Here, we present approximations of these circuits that substantially reduce the CNOT counts even further. Our preliminary numerical data, using the selected projective quantum eigensolver approach, show up to a 4-fold reduction in CNOTs. At the same time, there is practically no loss of accuracy in the energies compared to the parent implementation, while the ensuing symmetry breaking is essentially negligible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.