Abstract
Many research fields increasingly involve analyzing data of a complex structure. Models investigating the dependence of a response on a predictor have moved beyond the ordinary scalar-on-vector regression. We propose a regression model for a scalar response and a surface (or a bivariate function) predictor. The predictor has a random component and the regression model falls in the framework of linear random effects models. We estimate the model parameters via maximizing the log-likelihood with the ECME (Expectation/Conditional Maximization Either) algorithm. We use the approach to analyze a data set where the response is the neuroticism score and the predictor is the resting-state brain function image. In the simulations we tried, the approach has better performance than two other approaches, a functional principal component regression approach and a smooth scalar-on-image regression approach.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.