Abstract
Data envelopment analysis (DEA) traditionally assumes that input and output data of the different decision making units (DMUs) are measured with precision. However, in many real applications inputs and outputs are often imprecise. This paper proposes a linear robust data envelopment analysis (LRDEA) model using imprecise data represented by an uncertainty set. The method is based on the robust optimisation approach of Bertsimas and Sim to seek maximisation of efficiency under uncertainty (as does the original DEA model). In this approach, it is possible to vary the degree of conservatism to allow for a decision maker to understand the tradeoff between a constraint's protection and its efficiency. The method incorporates the degree of conservatism in the maximum probability bound for constraint violation. Application of the proposed model (LRDEA) to analyse the technical and scale efficiency of potato production in 23 Iranian provinces demonstrates the reliability and flexibility of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Productivity and Quality Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.