Abstract

The influences of interfacial tension and compressibility to the linear viscoelastic properties of nanocomposite and nanoporous materials are considered theoretically. The effective bulk and shear moduli of the systems are calculated within the generalized composite sphere model which takes into account the effect of interfacial tension. It is found that frequency dependence of the effective dynamic shear and bulk moduli of nanocomposites with the compressible elastic matrix and viscous inclusions may be represented in terms of the Zener model comprising of the viscoelastic Kelvin element in series with the elastic spring. The relations of the Zener model parameters with the material characteristics are revealed. The physical interpretation of the frequency behavior of the dynamic shear and bulk moduli against the interfacial tension, component compressibility, viscosity, and inclusion volume fraction is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.