Abstract

We present a time-dependent (TD) linear-response description of excited electronic states within the framework of embedded mean-field theory (EMFT). TD-EMFT allows for subsystems to be described at different mean-field levels of theory, enabling straightforward treatment of excited states and transition properties. We provide benchmark demonstrations of TD-EMFT for both local and nonlocal excitations in organic molecules, as well as applications to chlorophyll a, solvatochromic shifts of a dye in solution, and sulfur K-edge X-ray absorption spectroscopy (XAS). It is found that mixed-basis implementations of TD-EMFT lead to substantial errors in terms of transition properties; however, as previously found for ground-state EMFT, these errors are largely eliminated with the use of Fock-matrix corrections. These results indicate that TD-EMFT is a promising method for the efficient, multilevel description of excited-state electronic structure and dynamics in complex systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call