Abstract

Despite qualitative differences in their underlying physics, both hard and soft glassy materials exhibit almost identical linear rheological behaviors. We show that these nearly universal properties emerge naturally in a shear-transformation-zone theory of amorphous plasticity, extended to include a broad distribution of internal thermal-activation barriers. The principal features of this barrier-height distribution are predicted by nonequilibrium, effective-temperature thermodynamics. Our theoretical loss modulus G''(ω) has a peak at the α relaxation rate, and a power law decay of the form ω(-ζ) for higher frequencies, in quantitative agreement with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.