Abstract

Abstract The three-dimensional response of the tropical atmosphere to an isolated heat source is investigated using a primitive equation model linearized about a resting basic state on an equatorial β-plane. The model equations are solved by applying vertical and horizontal normal mode transforms. The thermal forcing was chosen to simulate the convection which occurs over tropical South America during the Southern Hemisphere summer. The vertical dependence of the forcing is such that the heating is zero at the top and bottom boundaries with a variable level of maximum beating. The model results with steady forcing are compared with the average circulation over tropical South America for a 19-day period in the Southern Hemisphere summer of 1979, and it is shown that the model reproduces many aspects of the observed circulation. The partition of the energy of the steady state response between the vertical modes is calculated, and it is shown that the internal mode with an equivalent depth of 208 m is domina...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.