Abstract

The performance of therapeutic ultrasonic (TUS) devices has a high degree of variability because of the fragility of the equipment (its transducer in particular) and its handling. These facts raise doubts about the effectiveness and safety of treatments employing such devices. Currently there is no simple way to adequately verify the performance of these devices. In our first experiments, we used a thermochromatic test body (typically a cylindrical plate 3.7 cm in diameter and 5.8 mm high) irradiated with therapeutic transducers driven by a standard radiofrequency (RF) generator. Results revealed a linear relationship between the thermal image areas, generated by the transducer's irradiation, and their respective effective radiation areas (ERAs), suggesting a good correlation. With five 3-MHz transducers, our group also observed the linear relationship using commercial TUS RF driving devices. In the present work, we used four 1-MHz transducers with their respective TUS RF driving devices and verified that there is a linear relationship between the thermal images and the ERAs at intensities of 1.0 ± 0.1and 0.5 ± 0.05W/cm2. The linear relationship obtained at both intensities confirms the suggestion that these thermochromatic test bodies can be used as the first evaluation of the ERAs and can monitor their changes with use. Moreover, if a previous assessment of the ERA and transducer intensities is performed, it is possible to follow the variation in ERA simply by monitoring the test body thermal stain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.