Abstract

<span lang="EN-US">The autoregressive integrated moving average (ARIMA) method has been used to model global navigation satellite systems (GNSS) measurement errors. Most ARIMA error models describe time series data of static GNSS receivers. Its application for modeling of GNSS under dynamic tests is not evident. In this paper, we aim to describe real time kinematic-GNSS (RTK-GNSS) errors during dynamic tests using linear regression with ARIMA errors to establish a proof of concept via simulation that measurement errors along a trajectory logged by the RTK-GNSS can be “filtered”, which will result in improved positioning accuracy. Three sets of trajectory data of an RTK-GNSS logged in a multipath location were collected. Preliminary analysis on the data reveals the inability of the RTK-GNSS to achieve fixed integer solution most of the time, along with the presence of correlated noise in the error residuals. The best linear regression models with ARIMA errors for each data set were identified using the Akaike information criterion (AIC). The models were implemented via simulations to predict improved coordinate points. Evaluation on model residuals using autocorrelation, partial correlation, scatter plot, quantile-quantile (QQ) plot and histogram indicated that the models fitted the data well. Mean absolute errors were improved by up to 57.35% using the developed models.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.