Abstract
Model predictive controllers use dynamics models to solve <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">constrained</i> optimal control problems. However, computational requirements for real-time control have limited their use to systems with low-dimensional models. Nevertheless, high-dimensional models arise in many settings, for example, discretization methods for generating finite-dimensional approximations to partial differential equations can result in models with thousands to millions of dimensions. In such cases, reduced-order models (ROMs) can significantly reduce computational requirements, but model approximation error must be considered to guarantee controller performance. In this article, a reduced-order model predictive control (ROMPC) scheme is proposed to solve robust, output feedback, constrained optimal control problems for high-dimensional linear systems. Computational efficiency is obtained by using projection-based ROMs, and guarantees on robust constraint satisfaction and stability are provided. The performance of the approach is demonstrated in simulation for several examples, including an aircraft control problem leveraging an inviscid computational fluid dynamics model with dimension 998 930.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.