Abstract

Multidimensional continued fractions generalize classical continued fractions with the aim of providing periodic representations of algebraic irrationalities by means of integer sequences. We provide a characterization for periodicity of Jacobi–Perron algorithm by means of linear recurrence sequences. In particular, we prove that partial quotients of a multidimensional continued fraction are periodic if and only if numerators and denominators of convergents are linear recurrence sequences, generalizing similar results that hold for classical continued fractions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.