Abstract

This paper considers a class of linear-quadratic-Gaussian (LQG) mean-field games (MFGs) with partial observation structure for individual agents. Unlike other literature, there are some special features in our formulation. First, the individual state is driven by some common-noise due to the external factor and the state-average thus becomes a random process instead of a deterministic quantity. Second, the sensor function of individual observation depends on state-average thus the agents are coupled in triple manner: not only in their states and cost functionals, but also through their observation mechanism. The decentralized strategies for individual agents are derived by the Kalman filtering and separation principle. The consistency condition is obtained which is equivalent to the wellposedness of some forward-backward stochastic differential equation (FBSDE) driven by common noise. Finally, the related \begin{document}$ \epsilon $\end{document} -Nash equilibrium property is verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call