Abstract

Linear properties of the reverse shear Alfvén eigenmode (RSAE) in a well-diagnosed DIII-D tokamak experiment (discharge #142111) are studied in gyrokinetic particle simulations. Simulations find that a weakly damped RSAE exists due to toroidal coupling and other geometric effects. The mode is driven unstable by density gradients of fast ions from neutral beam injection. Various damping and driving mechanisms are identified and measured in the simulations. Accurate damping and growth rate calculation requires a non-perturbative, fully self-consistent simulation to calculate the true mode structure. The mode structure has no up–down symmetry mainly due to the radial symmetry breaking by the density gradients of the fast ions, as measured in the experiment by electron cyclotron emission imaging. The RSAE frequency up-sweeping and the mode transition from RSAE to TAE (toroidal Alfvén eigenmode) are in good agreement with the experimental results when the values of the minimum safety factor are scanned in gyrokinetic simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.