Abstract

Let X be an arithmetic surface, and let L be a line bundle on X. Choose a metric h on the lattice Λ of sections of L over X. When the degree of the generic fiber of X is large enough, we get lower bounds for the successive minima of (Λ,h) in terms of the normalized height of X. The proof uses an effective version (due to C. Voisin) of a theorem of Segre on linear projections and Morrison’s proof that smooth projective curves of high degree are Chow semistable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.