Abstract

Product family design optimization is an important decision task in the early stages of product development. The extant optimization models for product family design assume that the known information for modeling can be determined precisely. However, many collected information for product design are prone to be imprecise due to the inherent uncertainty of human knowledge and expression. For example, when human experts estimate market demand of a product, imprecise information may be involved and influence the results of optimization. In this research, an optimization model with maximizing imprecise part-worth utility function is established for product family design problem. A linear programming embedded genetic algorithm is proposed to solve the proposed fuzzy optimization model. An industrial case of printing calculator product is used to illustrate the proposed approach. Experiments and sensitivity analysis based on the case study are also performed to analyze the relationship among the parameters and to explore the characteristics of the optimization model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.