Abstract

There is a growing interest in bio-based plastics for mitigating climate change; however, it remains unclear as to which products should be produced using bio-based plastics and how such plastics should be disposed of to minimize their environmental impact. To investigate the degree to which bio-based plastics can be applied toward the mitigation of climate change based on material characteristics, product applications, and end of life (EoL) options, we developed a linear-programming-based model to represent a plastic system of nine types of fossil-based plastics and 12 types of bio-based plastics in Japan. We found that introducing bio-based plastics could reduce life cycle greenhouse gas (LCGHG) emissions, provided that an appropriate EoL is coupled. Specifically, the ‘drop-in’ plastics were dominantly selected with feedstock recycling when only material property was constrained, and the LCGHG emissions from the system was −15.5 million t-CO2eq/year.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call